Helis St Tammany Energy Project

About Helis Oil & Gas

- New Orleans-based; privately owned
- Founded in 1934
- Approximately 50 employees including Northshore residents

Helis Oil & Gas

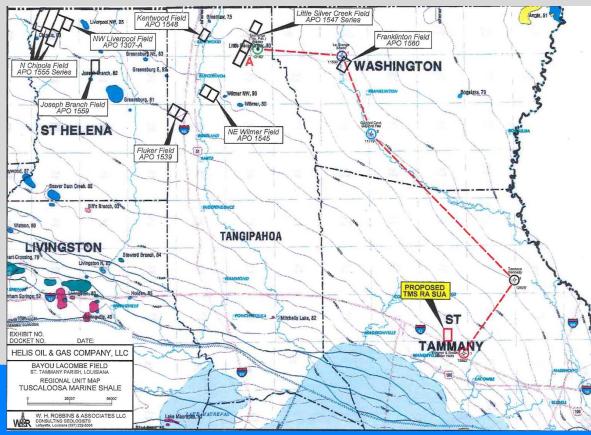
- Drilled and operated more than 65 wells in 2 states
- Current operations in TX, LA, ND, WY
- Outstanding safety and environmental record
- By design a quiet company
- Helis Foundation

The Helis Environmental Record

- Commendations for outstanding performance and cooperation
 - Coast Guard
 - Federal regulators ("SAFE" award)
- Voluntary SEMS for offshore and onshore
- First company to privately restore a barrier island, Stone Island
- Recognized for performance beyond legal requirements in that project (LDEQ website)

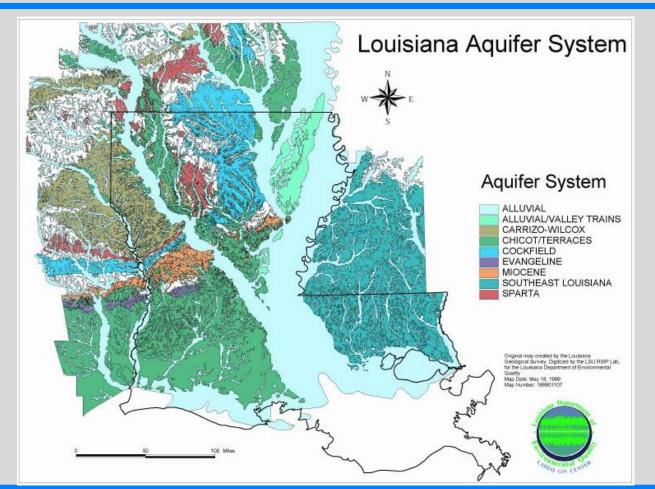
Well Activity in St. Tammany

- More than 18,000 water wells
- Approximately 50 conventional oil wells
- Phase 1 of our project: same as water wells with 3 differences:
 - Better equipment: steel piping instead of PVC
 - Better technology
 - Better permitting, regulation and accountability


About This Project

- Conventional TMS project
- Same aquifer that 4850+ wells have been drilled over 60+ years, including 43+ fractured TMS wells
- Located on a 960 acre lease in a nonresidential tree farm

About This Project


1.2 miles from Lakeshore High and more than 2 miles from any residential area

Permits and Agency Oversight

• USACoE
• EPA
• OSHA
• DNR
• DEQ
• LDOT

The Project

- Two phases longer and more expensive
- Phase 1: conventional vertical drill to 13,000 feet, 9000 feet below the lowest freshwater aquifer
- Stop, pull back, remove rig and analyze results
- Cement and plug well if not commercially viable

The Project

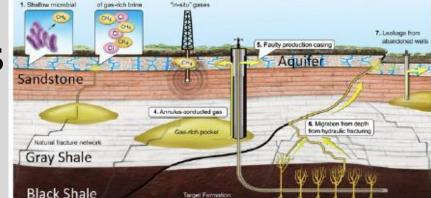
Phase 2: return rig, drill horizontally, hydraulically fracture Phase 1 & Phase 2 : approximately 30 days each

Drilling Facts

- Fracturing will take place at 12,600 feet
- Aquifer only extends to 3300 feet
- Fracturing at 1.8 miles below the aquifer
- Fractures will only extend +/- 250 feet
- Impossible for fractures to penetrate over 1.8 miles of rock to reach aquifer
- Average fracture .2 inches in width

Environmental Responsibility

- Pre-drilling air and water quality testing
- Pre-drilling benchmarking of noise levels
- No use of aquifer water
- No storage of waste water on site
- All waste water to be disposed of out of the parish


Mounting Body of Evidence

- Note: Not
- State of Maryland Public Health Study
- Cornell / Journal of Hydrology
- Groundwater Protection Council reaffirmed their 2009 study that the "states are doing a good job" in protecting groundwater

National Academy of Sciences

- Ohio State Duke
- Declining water issues
 - Marcellus (7)
 - Barnett (1)
- Noble gases as tracers
- ID causes of methane

3. Execution or

Geologic migratic

Fig. 1. A diagram of seven scenarios that may account for the presence of elevated hydrocarbon gas levels in shallow aquifers (see discussion in text). The figure is a conceptualized stratigraphic section and is not drawn to scale. Additional scenarios (e.g., coal bed methane and natural-gas pipelines leaking into aquifers) are unlikely in our specific study areas (Figs. S2 and S3).

 Findings: annulus cement leaks (4), production casing (3), UG well failure (1)

NAS Findings

Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing."

DOE Study (NETL)

- Greene County, PA over 18 months
- During and after hydraulic fracturing
- Subset of the second second
- Max height of fractures
- Migration of gas or fluid:
- Findings: no evidence of migration

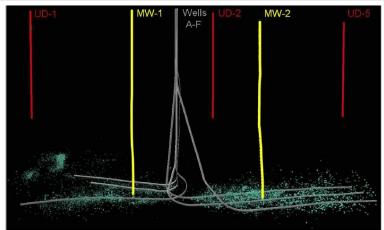


Figure 8: East-west section looking north that shows the spatial relationship between horizontal Marcellus Shale gas wells (A-F), vertical Marcellus Shale gas wells (MW-1 and MW-2), and vertical Upper Devonian/Lower Mississippian gas wells (UD-1, UD-2, and UD-5). Light blue spheres depict microseismic events located during the hydraulic fracturing of horizontal Marcellus Shale gas wells.

Helis "Above & Beyond" Commitments

- S strings of casing and cement instead of required 2
- 9 2.5 feet high protective berm
- Use of sound baffles to contain any noise
- No truck traffic during school entrance and exit times
- Traffic will be controlled during movements of heavy equipment

Helis "Above & Beyond" Commitments

- 24-hour security provided by experienced law enforcement personnel
- Fulltime presence of 2 safety supervisors
- Professional training of parish first responders (at Helis' expense)
- Voluntary implementation of SEMS

Sweeping Economic Benefits

- IHS CERA: \$283B added to GDP (2012), +\$1,200/ household (\$3500+by 2025)
- US oil production 9.5 MMB/D by 2015
- Imports down from 61% to below 40%
- 1.5B in LA taxes and fees in 2013 (14.6%),
 \$2.9B including indirect impacts
- Supported \$74B in sales to local firms in 2011
- \$410 million in LA property taxes in 2013, +37.5% since 2009
- Tangi School District: \$1.06M bonus

The Helis Promise

- Be respectful guests in your community
- Have a special responsibility since many Helis employees and their families live and go to school in St. Tammany
- Set a very high bar of performance for any other operator in St. Tammany
- Listen and accommodate wherever possible

helisenergyproject.com

facebook.com/sttammanyenergyproject