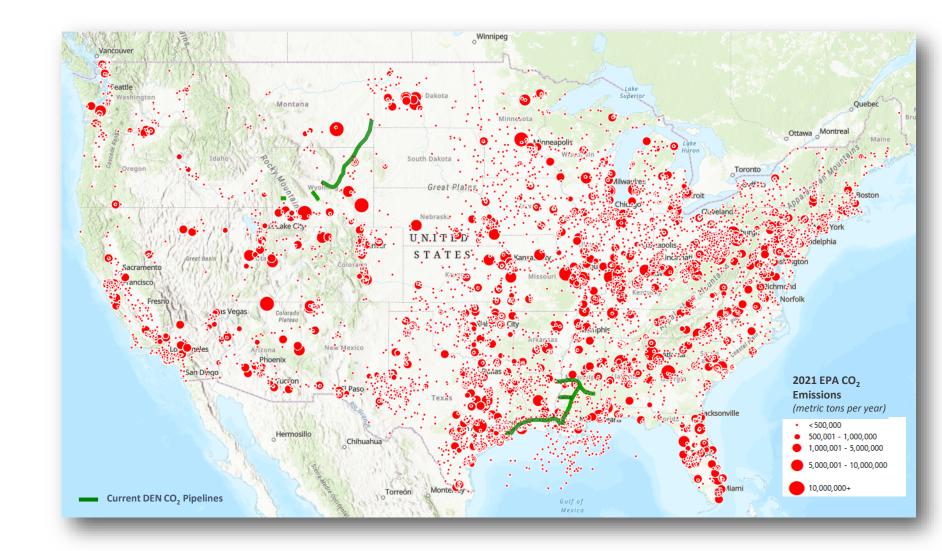
Gulf Coast Land Institute April 26-27, 2023 | New Orleans, LA

CCUS Geology for the Landman

Outline

CCUS Overview

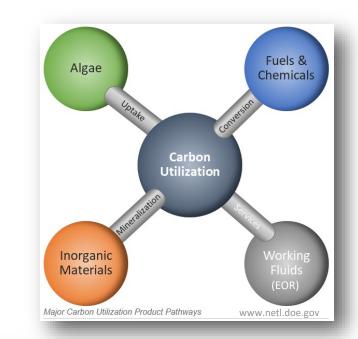
- What/Why CCUS
- Units of Measurement
- History of CCUS
- CCUS Incentives
- CCUS Requirements
- CCUS Key Uncertainties
- Current Status of CCUS


CCUS Lifecycle

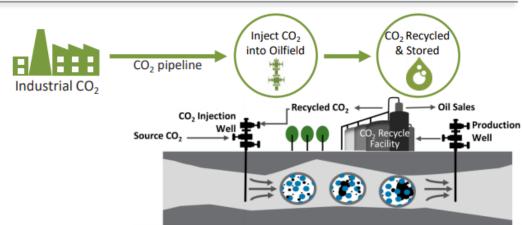
- Capture
- Transportation
- Storage

Project Evolution

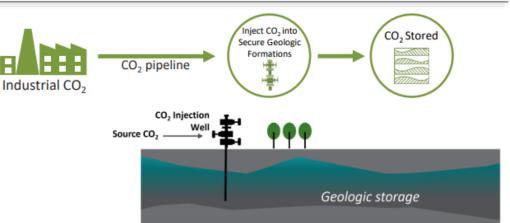
- Site Selection
- Design Process
- Leasing
- Monitoring
- Site Closure
- Wrap Up



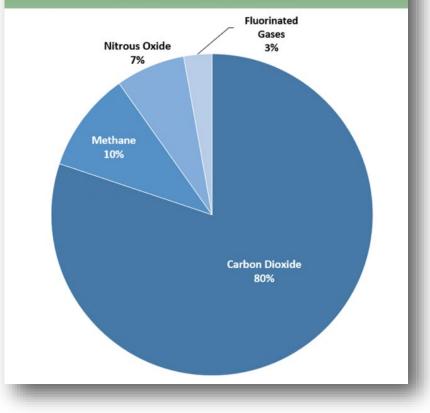
CCUS Overview



What is CCUS


- CCUS- Carbon Capture Utilization and Storage
 - A process that involves capturing industrial carbon dioxide (CO₂) at its source or from the atmosphere, *transforming it to valuable products in an efficient, economical, and environmentally-friendly way*, or storing it permanently underground
- CCS- Carbon Capture and Storage
 - A process that involves capturing industrial carbon dioxide (CO₂) at its source or from the atmosphere and storing it permanently underground

*CO*₂ Stored in Association with EOR


CO₂ Directly Stored

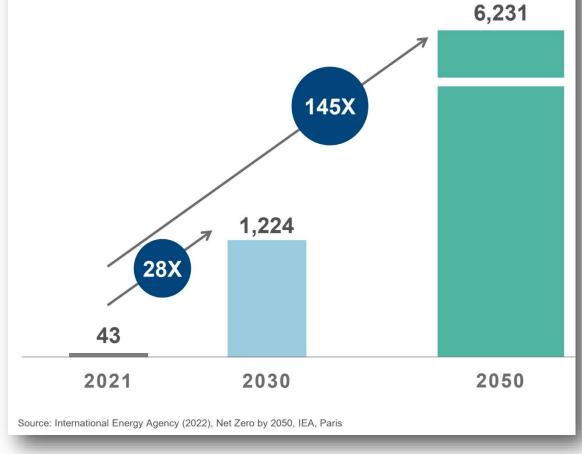
Greenhouse Gas Comparison

Greenhouse Gas (GHG)	Atmospheric Lifetime (yrs)	Global Warming Potential (GWP)	Primary Current Sources
Carbon Dioxide (CO_2)	300-1,000	1	Fossil fuel use, cement
Methane (CH ₄)	12 ± 3	21	Fossil fuel use, agriculture
Nitrous Oxide (N ₂ O)	120	310	Mostly agriculture, ~1/3 are anthropogenic
Hydrofluorocarbons (HFCs)	1.5-209	150-11,700	Alternative to ozone depleting substances
Perfluorocarbons (PFCs)	2,600-50,000	6,500-9,200	Primary aluminum production; semiconductor manufacturing
Sulfur Hexafluoride (SF ₆)	3,200	23,900	Use in electric power transmission, magnesium and semiconductor industries

Overview of U.S. Greenhouse Gas Emissions in 2019¹

High GWP Gases

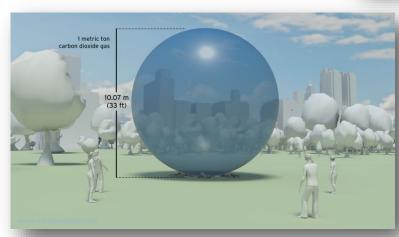
-GWP- total energy that a gas absorbs over 100 years relative to CO_2


Why CCUS

- Paris Agreement was enacted to "limit global warming to well below 2°C, preferable 1.5°C, compared to pre-industrial levels"¹.
 - 2°C above pre-industrial temperature levels is considered the critical warming limit by IPCC
 - 2°C is based on integration of climate-based impact, economic damage, and achievability
- To limit global warming to 2°C at the end of the century, 140 billion tonnes of CO₂ must be captured and sequestered by 2060²
- Lowest cost pathway to deep reductions in global emissions requires the deployment of a portfolio of low emission technologies, including CCUS¹

Global Carbon Capture Required to Meet IEA Net-Zero Emissions (NZE) by 2050

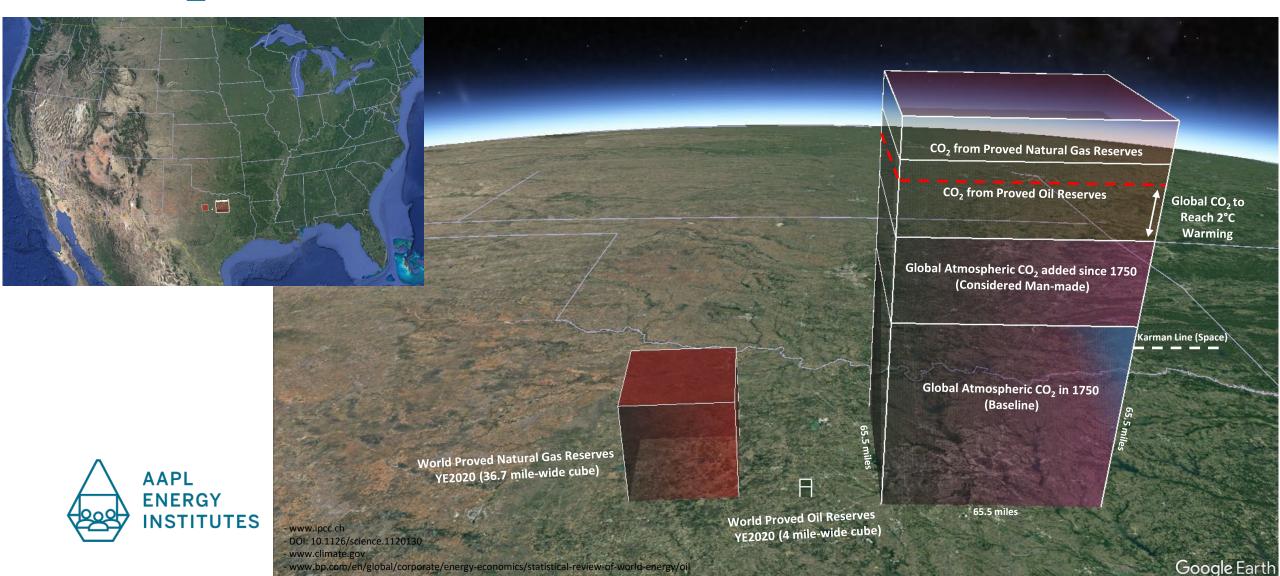
CO₂ (Mmtpa)

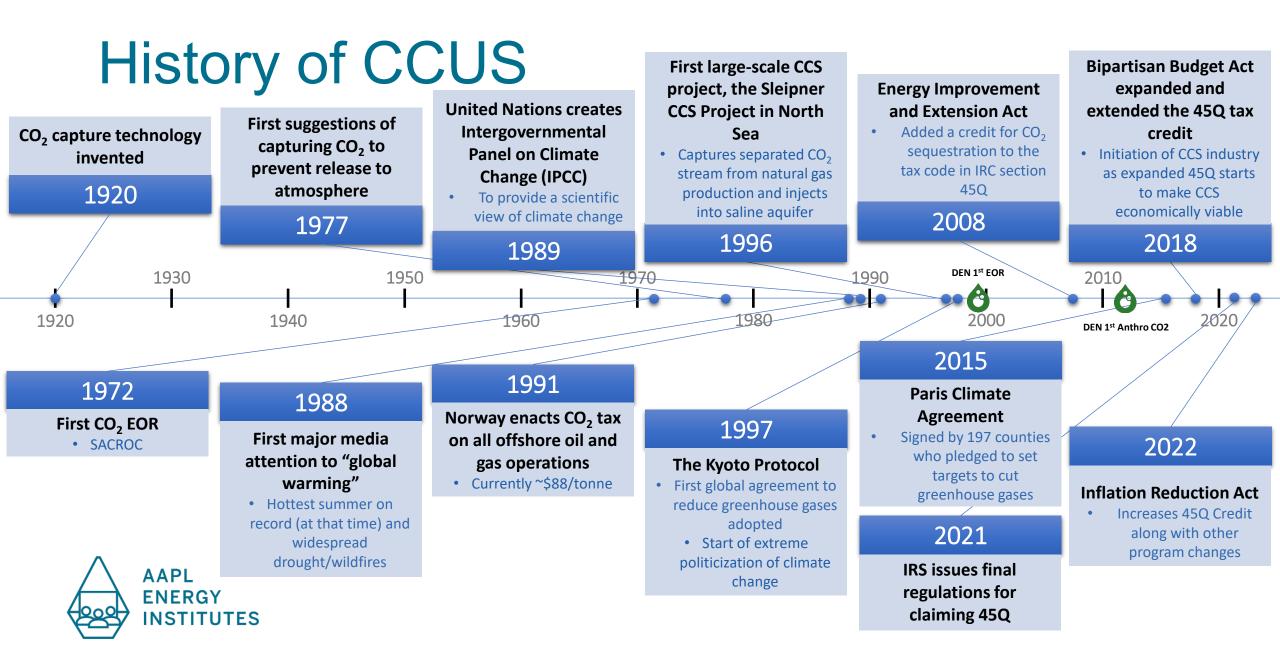

IPCC- Intergovernmental Panel on Climate Change IEA- International Energy Agency

¹www.IPCC.ch ²www.co2crc.com.au

Units of Measurement

Ton, Tonne, Metric Ton, Short Ton, Long Ton, US Ton, British Ton (this is a ton of work!)


- Imperial Measurement:
 - British ton (long ton) = 2,240 lbs
 - American ton (short ton) = 2,000 lbs
- Metric Measurement:
 - Metric ton (or tonne) = 1,000 kg (2,204.6 lbs)
- But wait, there's more! A ton can be a unit of volume (displacement ton (DT)) or a unit of energy (ton of TNT)
 - The later is important because explosive power is often referred to in Megatons (but 1 million tonnes is also referred to as a Megatonne)
 - Ton is also slang for 100 (Britain) 1,000 (Finland) 100,000 (Netherlands) and "a lot" (USA)
- The CCUS industry uses "tonne or metric ton" to quantify a volume of CO₂
 - Megatonne (Mt)- million tonnes
 - Gigatonne (Gt)- billion tonnes
- Common conversions:
 - 1 metric ton $CO_2 =$
 - 19.274 mcf at SATP
 - 1 MMCF = 51.8821 tonnes
 - 1 BCF = 51,882.1 tonnes
 - 20 Mt = 385 BCF
 - 50 Mt = 964 BCF (minimum CarbonSAFE site)



one metric ton carbon dioxide

CO₂ Volume Visualization

CCUS Incentives

Carrot or the Stick (Carbon Credit or Tax)?

Тах

- Europe
 - \$0.08-\$130 per metric ton CO2

Credit

- IRC Section 45Q
 - \$60-\$180 per metric ton CO₂
- CA Low Carbon Fuel Standard
 - Credit value based on market (currently \$69 per metric ton)
- Value of Public Perception
 - Company initiatives to be "carbon neutral" or "carbon net-zero"
 - Buy "credits" to offset own emissions

IRC Section 45Q History

• 2008

- \$10 per tonne for EOR / \$20 per tonne for sequestration tax credit adjusted annually for inflation
- Only good on initial 75 Mt from all projects
- Must capture at least 500,000 tonnes/yr to qualify
- Tax credit only available to capturer
- UIC Class VI designation created

• 2018

AT*

Carbon Tax Rates per Metric Ton of CO2e

CARBON

TRUST

CARBON NEUTRAL

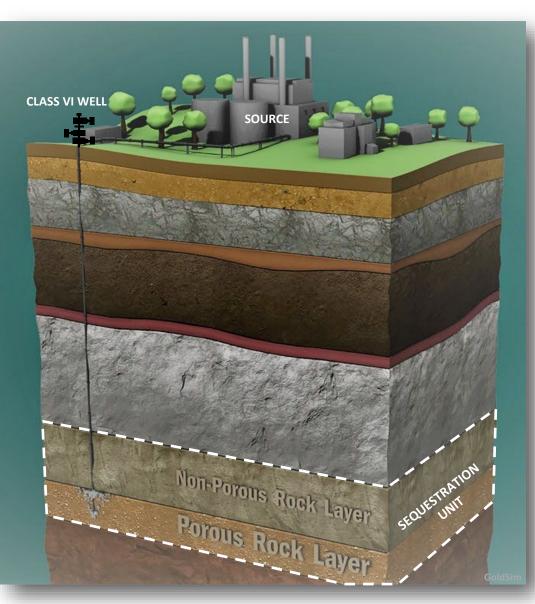
- Increase tax credit from its worth in 2017 (\$12.83/\$22.66) linearly to (\$35/\$50) in 2026 and then adjusted annually for inflation
- Removed 75 Mt cap
- Good for first 12 years of project
- Construction must start before Jan 1, 2024
- Tax credit transferable to CO₂ disposing or utilizing entity
- Direct Air Capture (DAC) allowed to qualify

• 2021

- Construction first start delayed to Jan 1, 2026
- Better described how to demonstrate "secure geologic storage"

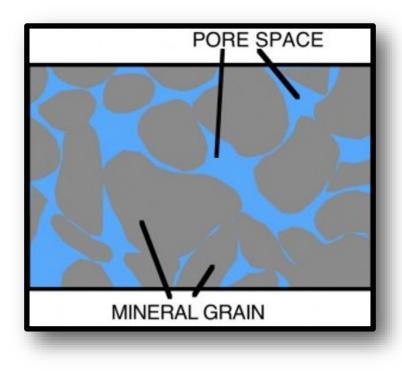
• 2022

- Tax credit increased to \$60/\$85
- DAC credit increased to \$180
- 5 years of direct pay / 7 years credit
- Construction first start delayed to 2033


Carbon Taxes in Europe Carbon Tax Rates per Metric Ton of CO2e, as of April 1, 2022

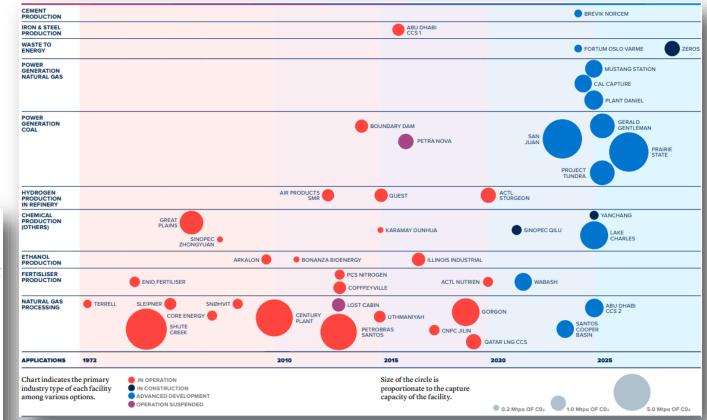
CCS Site Requirements

- Anthropogenic Source of CO₂ or DAC (Direct Air Capture
 - Captured
 - Compressed
 - Transported
- Geologic Sequestration Unit
 - Acquire surface rights
 - Acquire pore space rights
 - Acquire mineral rights (if applicable)
- Class VI Well:
 - Area of Review containing existing wells, geology, and culture
 - Geomechanical modeling
 - Geochemical modeling
 - Lifetime simulation of project including CO₂ plume and pressure extent
 - Well construction requirements
 - Demonstrated financial responsibility
 - Monitoring plan
 - Post-injection site plan
 - Emergency and remedial response plan


*limited application of Class II wells for permanent storage

CCUS Key Uncertainties (Non-geologic)

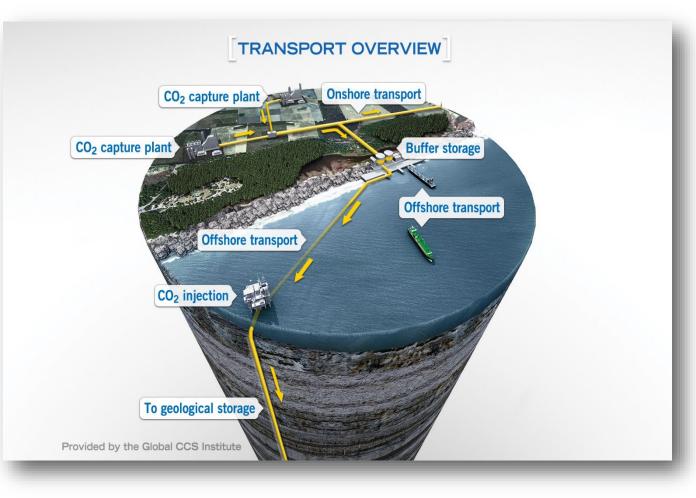
- Timing: Federal vs State Regulation
 - Class VI wells permitted through EPA (UIC) until states gain primacy
 - 2 states currently have primacy (ND & WY) with a third (LA) expected to gain primacy in 2023
 - CO, WV, AZ, TX recently applied or expected to in near term
 - State guidelines must meet the EPA requirements at a minimum
 - 2 Class VI wells permitted and drilled to date (both through EPA)
 - Each took ~6.5 years to complete
 - 43 current Class VI applications/permits (EPA-30 / ND-9 / WY-4)
- Pore Space Ownership
 - Individual states determine who owns pore space
 - 7 states have legislation addressing the issue (WV, IN, ND, WY, MT, LA, MS)
 - Each state has different requirements
 - Case law is split on who owns pore space (based on natural gas storage, salt dome, and substrate lawsuits)
 - In general, surface owner owns the pore space
 - Gray area is what constitutes a "mineral" and burden of proof
 - "Public interest" designation (airspace above property)
 - No full Federal framework currently exists to set up a CCUS facility*


*Some guidance documents & modifications to OCSLA released. CCUS on federal lands will be by ROW

CCUS Current Status

Currently 26 major CCUS projects operating worldwide capturing ~40 Mtpa (5 saline storage)

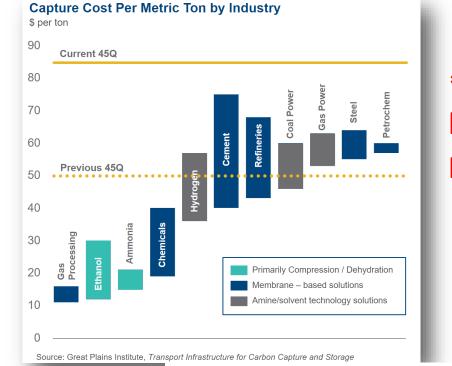
- Sleipner (Norway)
- Gorgon (Australia)
- Decatur (USA)
- Quest (Canada)
- Snohvit (Norway)

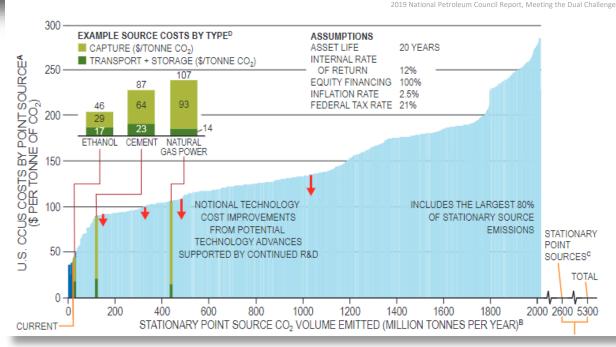

- Shute Creek Gas Processing Plant (EOR) is largest at 7 Mtpa
- Gorgon Project is largest saline storage project at 4 Mtpa
- Sleipner Project has largest cumulative saline storage to date at 20 Mt

CCUS Lifecycle

CCS Lifecycle

- 3 Main Components:
 - Capture
 - Source of anthropogenic CO₂
 - Compress for transport
 - Transportation
 - Move CO₂ from source to storage
 - Storage
 - Permanently sequester CO₂ underground




Capture

- Industrial Source
 - Low Cost Sources:
 - Ammonia
 - Natural gas processing
 - Ethanol
 - High Cost Sources:
 - Power plants
 - Steel
 - Cement
- DAC (Direct Air Capture)
 - Pulling CO₂ directly from atmosphere
 - Pros
 - Can build where there's storage (no transportation needed)
 - Modular design allows scalability
 - Cons
 - Take up a lot of space
 - Uses a lot of energy due to low concentration of CO₂
 - Can use a lot of water

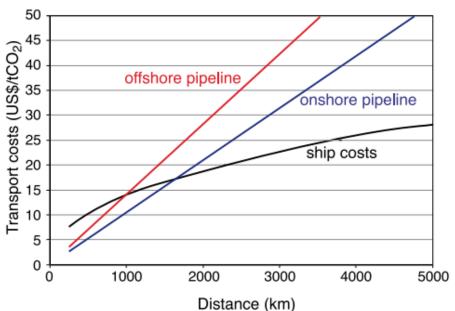
Capture is typically the highest cost of a CCUS project

Transportation

- CO₂ can be transported by pipeline, truck, rail, or ship
 - Large scale: pipeline & ship
 - Small scale: truck & rail
- CO₂ is most economically transported in dense phase
 - Need pipelines rated to higher pressure than most natural gas lines
 - Approx 5,000 miles of CO2 pipeline out of 2.3 million miles of pipeline in US¹
 - 0.2%
 - Denbury has >1,300 miles (~25%) of the CO2 pipeline²



10-100's Mtpa AAPL ENERGY INSTITUTES


¹PHMSA (2018)

20 tonnes/load

82 tonnes/car

²Per 2021 National Petroleum Council Report, *Meeting the Dual Challenge* ³A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilization and storage
 ⁴IPCC Chapter 4

CO₂ Storage

- 6 main types of storage:
 - Saline aquifers
 - Depleted oil & gas fields
 - EOR
 - Coal (Un-mineable coal/coalbed methane)

Structural &

stratigraphic trapping

CCS Project

Timeframe

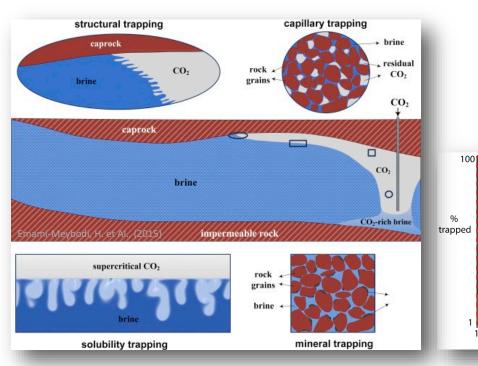
10

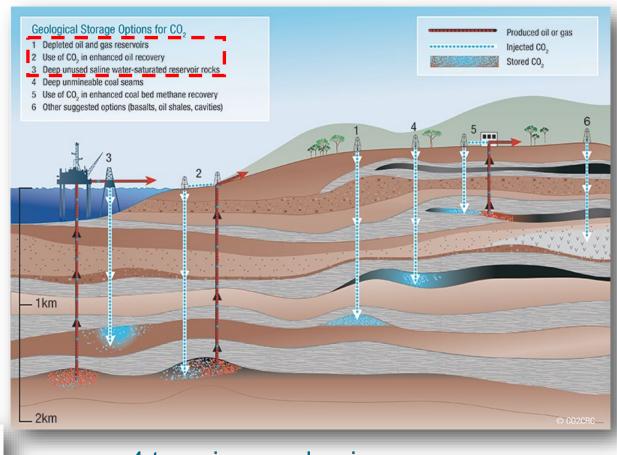
Increasing storage security

100

Time since injection stops (years)

Solubility

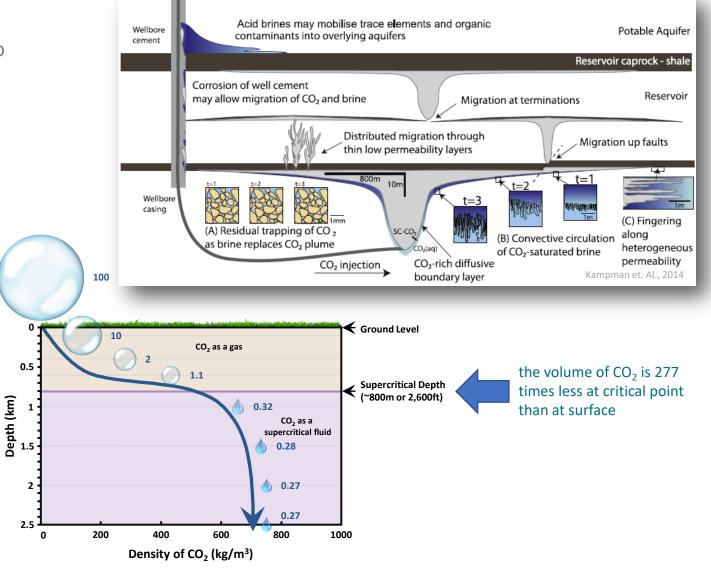

trapping


Mineral

trapping

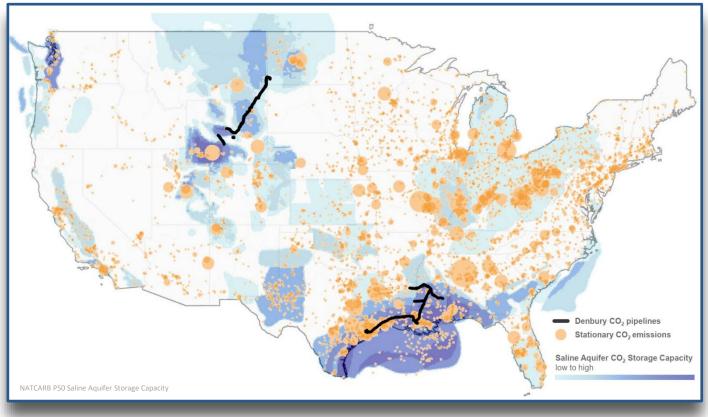
1,000 10,000

- Organic-rich shale
- Basalt



- 4 trapping mechanisms:
 - Buoyant (structural)
 - Residual (capillary)
 - Solubility
 - Mineral

Targeting CO₂ Storage


What makes a viable CO₂ storage target

- Proximity of site or nearby pipeline infrastructure to financially feasible, large CO₂ sources
- Depth ranges
 - Shallow limit determination
 - ~3,000ft due to supercritical state of CO₂
 - Depth of fresh water (<10,000 mg/L TDS) water
 - Deep limit determination
 - Based on well cost, reduction of favorable geologic properties, overpressure
 - Typically around 15,000ft
- Trap/Reservoir Presence
 - Structural/stratigraphic/low dip
 - Favorable reservoir architecture
 - Favorable petrophysics
- Seal Presence
 - A thick, laterally continuous, unfractured, high displacement pressure lithological unit
- Mitigated Risk
 - No deep freshwater zones, redundant traps, few wellbores, no critically stressed faults

U.S. Gulf Coast-A World-class CCUS Opportunity

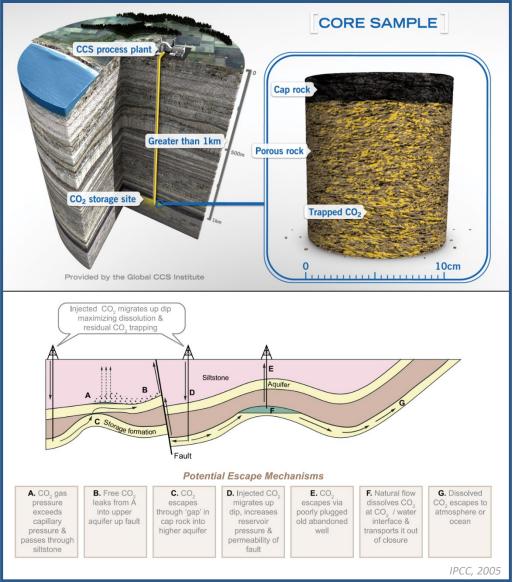
- The Gulf Coast has one the highest concentrations of stationary CO₂ emissions
- Advantaged for greenfield projects
 - Access to low-cost natural gas feedstock, waterways and deep-water ports, supportive regulatory policy
- Expandable CO₂ pipeline infrastructure already in place
 - DEN has the only dedicated CO₂ pipeline network in the Gulf Coast at >900 miles
- High-quality geology for secure long-term storage of CO₂
 - Large reservoirs, high injectivity & laterally extensive confining intervals
 - Approximately 5 trillion tonnes potential storage capacity in the U.S. Gulf Coast

Project Evolution


Site Selection Foundational Geoscience Technical Work

Seismic stratigraphic & structural framework Facies delineation & model Reef Margin / Sequence stratigraphic framework Petrography Database **Regional & local mapping** Petrofacies

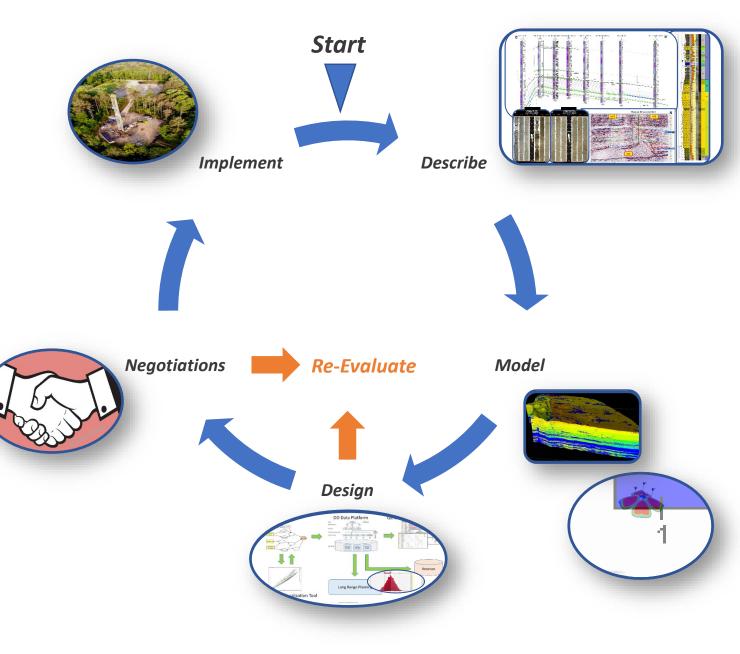
CCS projects require detailed geologic analyses to ensure technical & economic feasibility


Site Selection Critical Criteria

Geologic controlling factors related to injectivity, capacity & containment

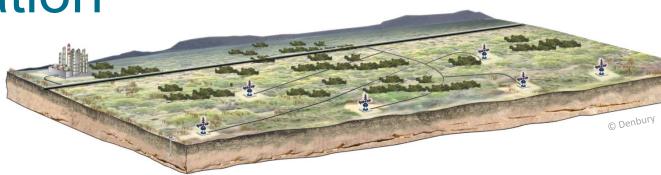
National Energy Technology Laboratory

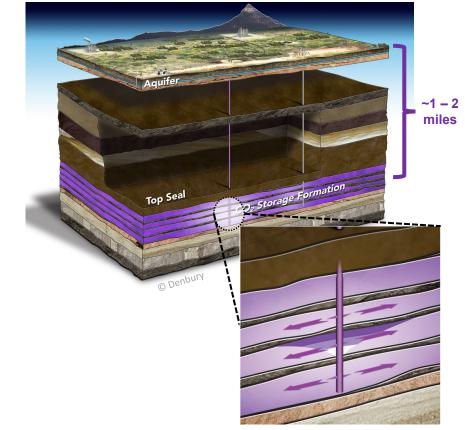
Three critical components	Characteristic	Favorable Geologic Controlling Factors	Inhibitors
of carbon sequestration: 1) Injectivity 2) Capacity 3) Containment	Injectivity	 Thick reservoirs High reservoir permeability Homogeneity in reservoir permeability distribution 	 Effective permeability constraints arising from geochemical effects (e.g., mineral dissolution/precipitation phenomena, salt precipitation) Reservoir over-pressurization from injection and/or proximity to other injection wells Near-well formation damage and effective permeability loss Transport constraints associated with CO₂ and rock interactions
	Storage Capacity	 Large reservoir areal extent Large reservoir thickness High reservoir porosity Stacked reservoirs Open boundary system 	 Thin reservoirs with low net storage thickness Limited effective pore volume due to high heterogeneity Formations with limited areal extent and closed or semi-closed boundary conditions
AAPL ENERGY INSTITUTES	Containment	 Multiple and/or thick confining zones that are laterally extensive Low confining zone permeability absent of faulting or fractures High confining zone capillary entry pressure Absence of leakage conduits Closed boundary system 	 High permeability zones causing extensive vertical or lateral CO₂ and/or brine migration Poor integrity of wellbores penetrating confining layers Thinning or intermittent presence of caprock Dissolution of confining zone material due to reactions with CO₂/brine mixture Natural or induced seismic activity, which may activate flow pathways in confining units



Design Process

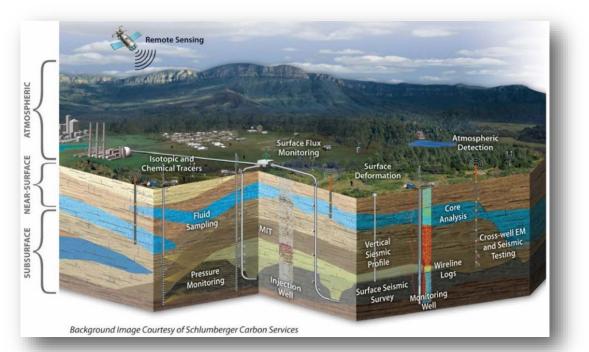
- Gather all pertinent subsurface information
- Build three-dimensional geologic models
- Run a series of dynamic models to determine the impacts of CO₂ injection
- Iterate through thousands of design decisions to obtain the design with the best risk weighted value opportunity
 - Negotiate/Lease
 - Final Investment Decision
- Implement
- Incorporate new data to quickly determine if the plan should be altered or continued

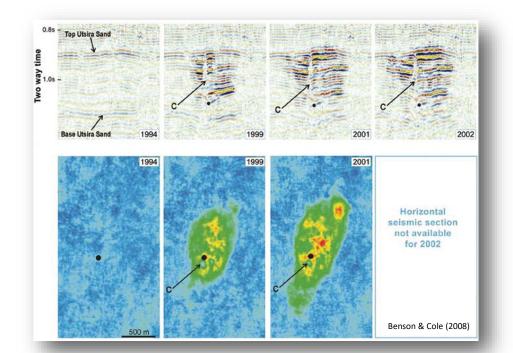




Leasing/Unit Formation

- Requirements vary by state
 - Or don't exist
- Surface
 - Surface ownership, pipeline ROW, pump stations,
 - Anchor owners and secondary ownership
 - How to draw AOI
- Subsurface
 - Mineral, pore space, water, cavern
 - Drill through rights, liability, depth intervals
- Philosophy
 - Lease/unitization sizing?
 - Lease staging/timing
 - Lease flexibility
 - How to mesh with ever-changing portfolio





Monitoring


- Class VI Permits require more rigorous standards of reservoir characterization and site monitoring than Class II (EOR)
 - Pre-Injection- 4D modeling & characterization of reservoir, seal, plume size, plume movement, and pressure front
 - Active-Injection- 4D monitoring
 - 4D seismic, logging, pressure, groundwater, air, gravity, MITs
 - Pre-Injection modeling reviewed and updated at minimum every 5 years
 - **Post-Injection** continued monitoring of site for minimum 10 years

Post Injection Site Care (PISC) & Site Closure

- After sequestration, wells are plugged and project moves into the PISC & Site Closure phase
 - Activities during this phase may include, but are not limited to, the continual of:
 - Seismic Monitoring
 - Above-Ground Monitoring
 - In-Reservoir Monitoring
 - Above-Seal Monitoring
 - Ground-Water Monitoring
 - Vadose Zone Monitoring
- Post injection ownership and liability vary by state
 - Louisiana- ownership and liabilities transferred to state after 10 years if site receives "certificate of completion"
 - Wyoming- ownership and liabilities transferred to state after 20 years if site receives "certificate of completion"
 - Mississippi- ownership and liability stays with operator indefinitely
- "Trust Funds" funded through per-tonne fees during injection period used for PISC if operator is insolvent
 - Indiana- \$0.08/tonne
 - Texas- proposing \$0.25/tonne

Summary

- CCUS will be a key component to climate mitigation policy
- CCUS is an emerging industry and new economic incentives are attracting businesses to the space.....it's the new wild west!
- The best development strategies contain economic scenarios of each CCUS component while minimizing associated risks/uncertainties
- Coupling storage project evolution and geologic uncertainty to leasing/unit formation is not black and white and is likely to get more difficult as larger land positions are leased up (at least until state regulations catch up)
- CCS should be viewed as a win for landowners given minimal impact to the surface vs the economic opportunity

Reference Material

- Benson S.M. & Cole D.R., 2008, CO₂ Sequestration in Deep Sedimentary Formations: Elements, v. 4, pp. 325-331.
- Emami-Meybodi, H. et al., 2015, Convective Dissolution of CO₂ in Saline Aquifers: Progress in Modeling and Experiments: International Journal of Greenhouse Gas Control, v. 40, pp. 238-266
- Johnson K.S. & Gonzales S.A., 1978, Salt Deposits in the United States and Regional Geologic Characteristics
 Important for Storage of Radioactive Waste: Union Carbide Corporation, Oak Ridge National Laboratories
- Kampman N., Bickle M., & Dubacq B. (2014), Fluid Flow and CO₂-Fluid-Mineral Interactions During CO₂-Storage in Sedimentary Basins: Chemical Geology v. 369, pp. 22-50.
- <u>www.beg.utexas.edu/gccc</u> (University of Texas, Bureau of Economic Geology, Gulf Coast Carbon Center)
- <u>www.crs.gov</u> (Congressional Research Service)
- www.denbury.com/investor-relations/investor-presentations-and-webcasts
- www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
- www.epa.gov/uic/class-vi-wells-used-geologic-sequestration-co2
- <u>www.iea.org</u> (International Energy Agency)
- <u>www.ipcc.ch</u> (Intergovernmental Panel on Climate Change)
- www.netl.doe.gov
 - Carbon Storage Atlas Report
- <u>www.npc.org</u> (National Petroleum Council)
- <u>www.undeerc.org</u> (University of North Dakota, Energy & Environmental Research Center)

6 6 Ô **OQUESTIONS** Ô AAPL **ENERGY INSTITUTES**